Synthesis and reactivity of 5-polyfluoroalkyl-5-deazaalloxazines.

نویسندگان

  • Sergii Dudkin
  • Viktor O Iaroshenko
  • Vyacheslav Ya Sosnovskikh
  • Andrey A Tolmachev
  • Alexander Villinger
  • Peter Langer
چکیده

Reaction of 6-arylamino-1,3-dialkyluracils with anhydrides of polyfluorocarboxylic acids in the presence of pyridine and subsequent cyclization with concentrated H2SO4 gave the corresponding 1,3-dialkyl-5-(polyfluoroalkyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones (5-polyfluoroalkyl-5-deazaalloxazines). The reactivity of these compounds towards nucleophilic reagents, such as sodium cyanoborohydride, acetophenone, nitromethane, potassium cyanide, indole and p-thiocresol, as well as Suzuki and Sonogashira couplings are described. The nucleophilic addition takes place at the 5-position of the 5-deazaalloxazine system and is in many cases irreversible to give 5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione derivatives in good to excellent yields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method for introducing a polyfluoroalkyl group into aromatic compounds

Introduction of a polyfluoroalkyl group into aromatic compounds was achieved by Friedel-Crafts reaction using (1-chloro-1-hydroperfluoroalkyl) sulfides 1, and the subsequent desulfurizing-difluorination of the resulting product using IF5 / Et3N-nHF. Perfluoroethyl, 1,1,2,2,3,3-hexafluoropropyl, and 1,1,2,2,3,3,4,4,5,5-decafluoropentyl groups were introduced to various aromatic compounds by this...

متن کامل

Synthesis of novel tridentate ligand-based palladium catalyst and investigation of its reactivity towards Suzuki, Sonogashira and Heck coupling reactions

We have demonstrated a simple and efficient route for the synthesis of a novel imine based tridentate ligand and its Pd-complex to investigate the C-C cross-coupling reactions, that involve column chromatography purification in only one step. The catalytic activity of the newly synthesized catalyst was studied for the Suzuki, Sonogashira and, Heck cross-coupling reactions under mild conditions....

متن کامل

Magnetic nanoparticle immobilized N-propylsulfamic acid: The efficient, green and reusable nanocatalyst for the synthesis of substituted coumarins

N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) was investigated as an efficient and magnetically recoverable catalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with variety aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be readily recovered easily ...

متن کامل

Synthesis of benzimidazole derivatives using Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles both under solvent and solvent-free conditions

Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) was found to be a useful catalyst for the synthesis of benzimidazole derivatives from o-phenylenediamine and aldehydes under solvent and solvent-free conditions at 80 °C. This reaction affords the corresponding benzimidazole derivatives compared with the classical reactions this method consistently gives a high...

متن کامل

Synthesis of benzimidazole derivatives using Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles both under solvent and solvent-free conditions

Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) was found to be a useful catalyst for the synthesis of benzimidazole derivatives from o-phenylenediamine and aldehydes under solvent and solvent-free conditions at 80 °C. This reaction affords the corresponding benzimidazole derivatives compared with the classical reactions this method consistently gives a high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 32  شماره 

صفحات  -

تاریخ انتشار 2013